HE P L KEF

e Chinese University of Hong Kong

=

CSCI2510 Computer Organization
Lecture 11: Control Unit and
Instruction Encoding

Ming-Chang YANG
mcyang@cse.cuhk.edu.h!(

et &)

g

COMPUTER _ ‘ 4 = i1 — T e U | YA PR ereey)
I E R S e U [‘ 4 i’ N i asie Wi = L Resr=ay M I CUoC0UT T B

bbbbbbbbbb

vvvvvvv
vvvvvvvvv

vvvvvvvvv

p. 7-4~7,.I5w(5th g)% ,

mailto:mcyang@cse.cuhk.edu.hk

Recall: Components of a Processor

:a
memory unit for the _ Control :
processor’s general- Register : . Interpret or decode the
purpose registers file circuitry fetched instruction
(GPRs)

- Hold the instruction
IR until its execution is
completed
()
G‘ri.tth(/n;itg; aPndeogic v Instruction
ni : Perform
an arithmetic or logic ALU AOdiess s Laraie
: generator address of the next
operation : :
PC Instruction to be fetched
and executed
()

: Allow the
communication between processor and memory

Outline

« Control Signal Generation

1) Hard-wired Control
2) Micro-programmed Control

* Machine Instruction Encoding

CSCI2510 Lec1l: Control Unit and Instruction Encoding 3

Control Signal Generation

* The processor must have some means to generate
the control signals for instruction execution:
1) Hard-wired control
2) Micro-programmed control

« Every control signals (e.g., PC-out, MDR-in, ADD,
SUB, ...) are switched on (active) and off (inactive)
at suitable time.

— The time duration is determined by the clock.

CSCI2510 Lec1l: Control Unit and Instruction Encoding 4

1) Hard-wired Control

« Hard-wired Control:
The combinational logic
gates are used to
determine the sequence
of control signals:

— A counter is used keep
track of the control steps.

— Control signals are
functions of the IR,
external inputs and
condition codes

— The control signals are
produced at the right time

(.e., control step).
CSCI2510 Lec1l: Control Unit and Instruction Encoding

CLK Control step
Clock counter
:' External
— * | Decoder : inputs
L > & < e.g. MFC
IR Encoder
(combinational :— Condition
— = logic gates) ; codes/ flags
‘_

e

AND

OR

v

Control signals

An example of
combinational logic gates.

1) Hard-wired Control (Cont’d)

* A simplified example:

Fetch Phase: load store
o Pl add . branch ofiset ~ Decoder & Encoder
T1: Read, IncPC
T2: MDR-out, IR-in
Execution Phase: [
»T0
»T1
>T2
»T3
Control >T4 * 3___] * -
Step | |
Counter >T5] =l e
»T6 T L
>T7 ol
Control signals] LR b _- L —
are switched on i 1| i i i i
at the right
[= o [= [c = c = = (0D}
control step (TO, g?r;t;?sl T 3 2 7 5 T g © D S g § 5 £
T1, T2, T3, ...) J S = ¢ I 6 x & O 2 x 4 2
= = 0 o =
https://people.cs.clemson.edu/~mark/uprog.html 2 Lll_J

CSCI2510 Lec1l: Control Unit and Instruction Encoding 6

1) Hard-wired Control (Cont’d)

. g . IR needs to be decoded to
¢ A Slmp“fIEd example determine the instruction
IR
load store &#¥/—
add . branch offset ~ Decoder & Encoder
»T0
»T1
»T2
»T3 Decaode
Control >T4 = o 3___] 1
Step | |
Counter >T5] il e
»TG Tt ?
»T7 Rl
Fetch Phase: +
.] all> R - .. ¢ | Pa— —h
Execution Phase: I 1| I I I i
T3: IR Decodln'g Control é = o c J5- IE = <|5- s 8 O T 5)
T4~T7: Operation : = o = . O i ' o) ' o 0o S °© £
Signals i < - xr o . @) . o & ;
(e.g., load) x = ¢ < o xx & O & xx a =
. 2

https://people.cs.clemson.edu/~mark/uprog.html

CSCI2510 Lec1l: Control Unit and Instruction Encoding 7

Student ID:

Class Exercise 11.1 Name:

* The control sequences of different instructions may
consist of a different number of steps.

— For example, the load instruction is composed of 6 steps (3
for the fetch, 1 for the decode, and 3 for the execution).

« Can you tell how many control steps are required for
the other three instructions (i.e., add, store, and
branch) in the given simplified hard-wired control?

CSCI2510 Lec1l: Control Unit and Instruction Encoding 8

Class Exercise 11.1

* A simplified example:

load store
add . branch offset Decoder & Encoder
»T0
>T1
»T2
»T3 Decode
Control »T4 ;1 _;____l ° - .
Step | |
Counter TS T L 1—' T
»T6 * T -
»T7 14
P
-I. 115 — LR .. —lr— -
I] | |] |
| | | | | |
Control £ ¥ © £ ¥ £ £ B8 £ % O ©W =B Q
Signals'*?_gd:‘?n':d:‘?d‘?%g‘?':
7 - ¢ < o @ a O & x o =
- = > o al - =
https://people.cs.clemson.edu/~mark/uprog.html 2 Lll_J

CSCI2510 Lec1l: Control Unit and Instruction Encoding 9

1) Hard-wired Control (Cont’d)

« The wiring of the logic gates for control signal
generation is fixed.
— Simple signal:
e PC-out=TO
— Complicated signal :
« MDR-InE = ((IR == ADD) and ((T2) or (T5))) or

((IR == SUB) and ((T2) or (T5))) or
... CarryFlagor ... and ... or ... and ... and ...

* The hard-wired control can operate at high speed.

 However, the hard-wired control has little flexibility.
— It can only implement instruction set of limited complexity.

CSCI2510 Lec1l: Control Unit and Instruction Encoding 11

2) Micro-programmed Control

Step Action Ex: ADD R1, (R3)

The control signals are
. 1 PC.ut, MAR i, , Read, Select4,Add, Z;,, B,
generated by a micro-program.5———s—~-—wwromors

 Every line is a control word. XX ™

4 R3out , MAR in , Read

» Micro-programs are stored in @ . Y. WMFC. MR

MDR o , SelectY, Add, Z;, , B,
special memory (control store).: z..rt.. end

(‘

= S| 5 3 15 < s EL) _LIEJ
Merosion .. 6|28 8/ & 53 8s il dd2Eas
1 o1 1 1 0 0 01 1 1, 00 0 0 0 01 O
Micro- 2 Control 2. 0O, 0,0 O 0O 2 0 OO0 1 0,0 01 0 012
Pr()gram-< 3 word o o/ 0ol0 1 1 0/l0 0/ 0 o 0/l0/ 0 0 0|0 O
4 o o601 1,00 0 0 O OO O/O0O/1T O 0 0O
5
6 O 00 O0O/1 O0/0' O O 0, 0 0 00 0
I o oo 00 0O OO O O0O/1T 01 O 01 00

-
CSCI2510 Lec1l: Control Unit and Instruction Encoding 12

Class Exercise 11.2

I . Step Action Ex: ADD R1, (R3)
* Please fill in the missing
. 1 PC.ut, MAR i, , Read, Select4,Add, Z;,, B,
control word In the below 2 7 PG Ye WMEG.MDR..
micro-program for the 3 MDRow, Ri
- . 4 R3out , MAR in , Read
Instruction ADD R1, (R3): 5 Rl Y. WMFG VDR
6 MDR,y, SelectY, Add, Z, ,B,
7 Zout,R1in,End
c 5 — O IJCJ
' c 3 x 3 &) - 5 < 5 % 5 o
Micro - s - = B _ 3 S c
nstruction .. 9 9 T Q29 £ 23283 R E = oo
1 o 1 1 1 0 O 01 1.1 O O O O O O 10
2 1 0 0 0o 0o o1 0 00O 1 00O O 1 0O01
3 o o 0 o1 1 0 O OO O0OO0OO0OTO0O o0 0 o00O0
4 o o1 1 0 0O 0O O OO OO O 1T 0 0O0o00O
Control
5
word
6 O 0 0 01 o O O O 0 0 0 O O

7 o 0o o oo 0o 00O OO0 1 01 00 100
CSCI2510 Lec1l: Control Unit and Instruction Encoding 13

2) Micro-programmed Control (Cont’d).:%

* A micro-program counter
(UPC) is used to read control — adiress
words sequentially from generator
control store. u

@® Whenever a new instruction
Is loaded into IR, “Starting
Address Generator”’ loads the
starting address into uPC.

@ uPC increments by clock,
causing successive micro- _ —Z
Instructions to be read out MetScion .
from the control store.

® Control signals are generated
In the correct sequence
defined by a micro-program.

Clock ——m uPC

\/

Control Control
store ::> word

c

.

lect
d

| S| | 3

ccccc

Yin

© © = Read
o o oo o o = | §

~N O R W N =

O O 0O 0o o -~ o PGCn
O 0o 0o o o = | PCu
O © 0 2 o o = MARmn

.

©O - o o = o o MDRout
O o oo =~ oo IRin
O 0o 20 0 =20

o o -~ o o o o | Rb
- 0O oo o o o | R
o oo =~ o o o Ru
o o =0 o = o | WM
- O OO0 o o o End
O - OO0 O O = Bi,
© © =~ © © o o MDRe

o o O

=
o1

2) Micro-programmed Control (Cont’d)s

* The previous scheme

IS not able to change (— Exema
: inputs
the control sequence Starting
. an .-
by other inputs. R =X branch concition
— It cannot support giiir;izr
branch on condition <]
code (e.g. Jump if < 0) @
« Starting and branch
. Clock ——= uPC
address generator:
— Load new address into U
uPC when instructed. Control
— Check condition codes store. ——— oo

and external inputs
that can affect uPC.

16

2) Micro-programmed Control (Cont’d).:

[4

« uPC is Iincremented

every cycle except: (— Exema
@ When a new Starting nputs
instruction loaded into| 1k —> ranc concition
IR, uPC is loaded with address
starting address of the generator
micro-program. -
@ When taken branches, @
uPC is updated with | ook — o e
the branch address.
® When taken END U
ir;u;:erg e|tr.lstruc:t|on, uPC Cg{gtrreol ~ SVZ,?S"'

CSCI2510 Lec1l: Control Unit and Instruction Encoding 17

Outline

* Machine Instruction Encoding

CSCI2510 Lec1l: Control Unit and Instruction Encoding 18

 An Instruction must be LK [Control step

Clock ——

encoded in a compact e
binary pattern. H ‘
<— 1 External
: inputs
* The decoder must —| Decoder |=——] g MFC
interpret (or decode) the | ™ | © | g oeer L .
instruction, and generate| |__. B v
the control signals
correctly. l l ‘

v

Control signals

CSCI2510 Lec1l: Control Unit and Instruction Encoding 19

Why Machine Instruction Encoding?

« We have a bunch of instructions:
— Such as add, subtract, move, shift, rotate, branch, etc.

* |nstructions may use operands of different sizes.
— Such as 32-bit and 8-bit number, or 8-bit ASCII characters.

* Both the type of operation and the type of operands
need to be specified in encoded binary patterns.
— Type of Operation: Often referred to as the OP code.
* E.g., 8 bits can represent 256 different OP codes.

— Type of Operands: Addressing modes.

« An operand is the part of an instruction that specifies data to be
operating on or manipulated.

CSCI2510 Lec1l: Control Unit and Instruction Encoding 20

Example: 8051/8052 OP Code Map

Lower Nibble

Upper Nibble

[1 2 3 4 3 6 7 8 9 A B C D E F
HOR AlkP LIkF 515} IMIC IMC IMIC IMC IMC IMC IMC IMIC IMC IMC IMIC IMC
pagel addrl & 2 2 iramm &R0 @F1 511 R Rz F3 R4 RS (1= R7
JEC AL LICALL RRELC DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC DEC
kit pagel addrl & o iy iram [l @H 1 RO F1 Rz F3 Fd F5 FE R¥
reladdr
JB AlkdP RET FL ADD AhD ADD ADD AhD ADD ADD Abh ADD ADD ADD AhD
kit pagel o B, A o, o B, B, =5 A B, B, o A
reladdr Hdata iram =H0 @F1 RO R Rz F3 Fid (S1=1 RE R7
JHB ACAsLL RETI RLC ADDC ADDC ADDC ADDC ADDC ADDC ADDC ADDC ADDC ADDC ADDC ADDC
Lt pagel o B, o A B, o A B, B, o A B, L
reladdr Hdata iramm =R =H1 RO F1 F2 R F4 F5 FE R7
JC AP ORL ORL ORL ORL ORL ORL ORL ORL ORL ORL ORL ORL ORL ORL
reladdr pages iram, iram, I o, I o, o, iy, I - o, iy, I o,
o Hdata Hdata iramm R0 @H 1 RO F1 Rz F2 F 4 F5 (51=] R¥
JHC AL AL AL AL AL AL AL AL AL AL AL AML AL AL AL
reladdr pagez iranm, iram, A B A A B A A A B A A A
o Hdata Hdata iram &R0 @H 1 RO R Rz R3 R4 (515] RE R
J= AlkP =RL =RL =HL =HRL =RL =HL =HRL =RL =RL =HL =RL =RL =HL =HRL
reladdr paged iram, iram. B, A, B, 5 A, B, % A, A, B, 5 A,
o Hdata Hdata iram &R0 @F1 RO F Rz F3 R4 R5 RE R7
JHZ AL ORL JrAP bl O b O kA bl O b O kA b 1% bl O b O kA OIS bl O b O
reladdr paged C. @di+DPTH o, irar, @R, @1, RO, R1. Rz, Rz, R4. RE5. RE. RY.
bk Hdata Hdata Hdata Hdata Hdata Hdata Hdata Hdata Hdata Hdata Hdata Hdata
SAkP AP AML kO s kA O kA A C1 kA O kO kA OO0 kA C1 kA O kA OIS A C1 kA O
reladdr paged C. B, oB ram, ram, ram., ram, iramm, ram, ram., iram, ram, ram., ram,
it @i +PC iram =H0 @F1 510 F1 Rz F3 F 4 F5 (51=] R7
b O AL kA kA O SLIEE SLIEE SLIEE SLIEE SLIEE SLIEE SLIEE SLEE SUEE SLIEE SLIEE SLIEE
OFTH. paged hit, B =5 B By =5 B L9 5 A A L9 =5 B
Hdata1E C @i+DPTH Hdata iramm R0 @H 1 RO F1 Rz F3 Fid F5 RE B
ORL AP kAN IMC kA LIL Farils kA b O b 0 kAN b O bl O b O b O b O b 0
C. pageh C. DFTHR HE @H 0, @R, RO, F. R2. F3. R4, R5. RE. R7.
it bk iranm iramm iram iranm iram iramm iramm iranm iramm iram
AL AL CPL CPL CIME CIME CIME CIME CIME CIME CIME CIME CIME CIME CIME CIME
C. pageh bt C L A, @R 0, @H1 RO, F1. R2. F3. B4, RS, RE. R7.
At Hdata, rarnm, Hdata, Hdata, Hdata, Hdata, Hdata, Hdata, Hdata, Hdata, Hdata, Hdata,
FLISH AP CLR CLR St P =CH =CH =CH =CH =CH =CH =CH =CH =CH =CH =CH
iram pagekb bk C 2 o, o, o, o, B, o, o, o, B, A, o
iram &R0 @F1 511 R Rz F3 R4 F5 (31=1 R7
FOF AL SETE SETE Lty [=CHD =CHD [LU= [] [CuUMZ [[] [
iram pagekb bk C 2 irar, B, o, RO, R1. R2z. Rz, F4. RE. RE. RY.
reladdr @R @F1 reladdr reladdr reladdr reladdr reladdr reladdr reladdr reladdr
b C1%55 A lkP kA bl O CLR b kA b O b kA beA CI%F bl I b A 1% b O b
B, page? B, B, 2 o A B, o A B, B, o A A, L
@D PTH =R 0 @=H1 iramm =R =H1 RO F1 F2 R F4 F5 FE R7
RACMNS | ACALL kA D bl O, CPL b 0 kA b O b 0 kAN b O bl O b O b O b O b 0
@DOFTR,. | page? @R 0, @F1. iy iram, @H 0, @R, RO, F. R2. F3. R4, R5. RE. R7.
2) i) 2,) 2 2,) o, A, 2,) 2 2,

Recall: Type of Operands

 Addressing Modes: the ways for specifying the

locations of instruction operands.

Address Mode Assembler Syntax Addressing Function

1) Immediate

2) Register

3) Absolute

4) Register indirect
5) Index

6) Base with index

CSCI2510 Lec04: Machine Instructions

#Value
Ri
LOC
(Ri)
X (RiQ)

(Ri, Rj)

Operand = Value

EA = Ri
EA = LOC

EA = [Ri]

EA = [Ri]+ X

EA = [Ri] + [R)]

EA: effective address
Value: a signed number

X: index value
22

One-word Instruction (1/2)

« Some Instructions can be encoded in one 32-bit word:
8 3+4 3+4 10

OP code | Source Dest Other info

— OP code: 8 bits
— Src and Dest: 3 bits (addressing mode) + 4 bits (register #)
— Other info: 10 bits (such as index value)

« ADD R1l, R2 « MOV R5, 24 (RO)
— Needs to specify OP code, — Needs to specify OP code,
SRC and DEST regqisters. two registers and an index
« 8 bits for OP code. value of 24.
3 bits are needed for 10 bits of other info can be
addressing modes. used for the index value.

4 bits are required to

distinguish 16 registers.
23

One-word Instruction (2/2)

e Some Instructions can be encoded in one 32-bit word:
8 24

OP code Branch address

— OP code: 8 bits
— Branch address: 24 bits

 Branch>0 Offset

— 8 hits for OP code
— 24 bhits are left for the branch address.

* Question: How can we branch farther away using different
addressing modes?

CSCI2510 Lec1l: Control Unit and Instruction Encoding 24

Two-word Instruction

« What If we want to specify a memory operand using
the absolute addressing mode?

MOV R2, LOC

— 8 bits for OP code, 3+4 bits for addressing mode and
register number for R2, 3 bits for addressing mode for LOC.

— Only 14 bits left for specifying the memory address.

« Some instructions need an additional word to contain
the absolute memory address or an immediate value:

OP code ' Source Dest Other info

Memory address / Immediate operand

— E.g.,Add R2, FF000000, (immediate operand)

CSCI2510 Lec1l: Control Unit and Instruction Encoding 25

Multi-word Instruction (1/2)

 What if we want to allow an instruction in which both

two operands can be specified using the absolute
addressing mode?

MOV LOC1l, LOC2

|t becomes necessary to use two additional words for
the 32-bit addresses of the two operands ...

OP code | Source Dest Other info

Memory address / Immediate operand

Memory address / Immediate operand

CSCI2510 Lec1l: Control Unit and Instruction Encoding 26

Multi-word Instruction (2/2)

* |If we allow Instructions using two 32-bit direct
address operands, we need three words in total for
the instruction encoding scheme.

- E.g.,, MOV LOC1l, LOC2

« Multiple length instructions are difficult to implement
with high clock rate.

— The design of the Instruction Register (IR) and the
Instruction Decoder will be complex.

— The Control Unit will be difficult to design.

« Shall we go for simple or complex?

CSCI2510 Lec1l: Control Unit and Instruction Encoding 27

Recall: RISC vs. CISC Styles

RISC CISC

Simple addressing modes
All instructions fitting in a single word

Fewer instructions in the instruction set,
and simpler addressing modes

Arithmetic and logic operations that can
be performed only on operands in
processor registers

Don’t allow direct transfers from one

memory location to another
Note: Such transfers must take place via a processor register.

Programs that tend to be larger In size,
because more but simpler instructions are
needed to perform complex tasks

Simple instructions that are conducive to
fast execution by the processing unit using
techniques such as pipelining

More complex addressing modes

More complex instructions, where an
instruction may span multiple words

Many instructions that implement complex
tasks, and complicated addressing modes

Arithmetic and logic operations that can
be performed on memory and register
operands

Possible to transfer from one memory
location to another by using a single Move
instruction

Programs that tend to be smaller in size,
because fewer but more complex
Instructions are needed to perform
complex tasks

CISC vs RISC

* CISC OR RISC?

— CISC machines usually require less instructions to do
something but have a lower clock rate ...

— RISC machines require more instructions to do something
but have a higher clock rate...

 The Best of Both World: CISC WITH RISC

— Modern processors usually combine the strengths of both
CISC and RISC.

— E.g., a CISC design with a RISC core:

* Design a RISC-style core instruction decoder with high clock rates.

* Provide a rich set of CISC-style instructions and addressing modes
to assembly programmers.

CSCI2510 Lec1l: Control Unit and Instruction Encoding 29

Summary

« Control Signal Generation

1) Hard-wired Control
2) Micro-programmed Control

* Machine Instruction Encoding

CSCI2510 Lec1l: Control Unit and Instruction Encoding 30

